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Abstract. A Lattice Boltzmann model is developed to account for the competition between surface tension
and dipolar interaction in magnetic fluids. The description of the interactions was kept as simple as possible
to identify and isolate the nature of the essential interactions in the examined situations. The model is used
thereafter in order to simulate the deformation of a magnetic fluid drop under the action of an external
magnetic field, as well as the onset of the normal field instability in magnetic fluids. The success of the
model, and easily identified deviations, demonstrate that the model is a powerful and versatile tool for the
study of magnetic and nonmagnetic fluid systems with interfaces.

PACS. 75.50.Mm Magnetic liquids – 47.11.+j Computational methods in fluid dynamics – 47.20.Ma
Interfacial instability

1 Introduction

Lattice Boltzmann (LB) cellular automata techniques
have been proved to be extremely useful tools for investi-
gating complex fluid physics (see the recent monographs
[1–3] and references therein). Their parallel nature, the
easy handling of irregular geometries and the possibility to
incorporate the physics at a mesoscopic level are major ad-
vantages of these techniques, when compared to more clas-
sical methods for simulating fluid phenomena. Interparti-
cle interactions, surface tension and wetting forces may be
incorporated into LB models such that the macroscopic
behaviour (time evolution and final equilibrium state of
the system) is always recovered after performing a certain
number of iterations (automaton steps).

Magnetic fluids, also known as ferrofluids (see [4–6]
and references therein), are a particular class of complex
fluids whose main characteristics are the presence of dipo-
lar interactions between colloidal particles dispersed in
a carrier liquid. Due to the huge number of such very
small colloidal particles (approx. 100 Å in diameter) which
have a permanent magnetic moment, competition between
dipolar interaction and surface tension gives rise to a rich
variety of interface phenomena in magnetic fluids [4,5].

This paper reports a LB model which accounts in a
highly simplified form for only the principal forces which
mainly define the behaviour of magnetic fluid interfaces
and is organized as follows. Section 2 is a description of

a e-mail: w.g.fruh@hw.ac.uk

the 2D lattice Boltzmann model for a two component fluid
system where particles belonging to one component are
subjected to dipolar interaction with nearest neighbours.
The influence of magnetic interaction on the linear inter-
face profile is discussed in Section 3. The LB model is used
in Section 4 to study the equilibrium shape of a magnetic
fluid drop placed in a Hele-Shaw cell and subjected to an
external magnetic field. An attempt to simulate the rise of
the normal field (Rosensweig) instability using this model
is further presented in Section 5 before final conclusions
about the applicability of this model are made.

2 Description of the Lattice Boltzmann model

Following the general approach in [7], we consider the LB
evolution equation for a fluid system with two immiscible
components on a square lattice L with unit spacing (the
D2Q9 model [8]):

nσa(x+ea, t+ 1)− nσa(x, t)=− 1
τσ

[nσa(x, t)−nσ,eq
a (x, t)] .

(1)

Here nσa(x, t), σ = 0, 1, x ∈ L, is the particle number
density of the component σ having the velocity
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while nσ,eq
a (x, t) is the corresponding equilibrium distribu-

tion function and τσ is the corresponding relaxation time.
The equilibrium distribution functions are expressed as
series expansions in the local velocity uσ = uσ(x, t) while
the series coefficients are recovered after convenient dis-
cretisation of the continuous Boltzmann equation and the
recovery of hydrodynamic momenta up to fourth order
in uσ [9]:

nσ,eq
a = ωaρ

σ

[
1 + 3ea · uσ +

9(ea · uσ)2

2
− 3

2
(uσ)2

]
.

(3)

Here

ωa =


4
9 , a = 0
1
9 , a = 1, . . . , 4
1
36 , a = 5, . . . , 8

(4)

are the weight coefficients [9], and

ρσ =
∑
a

nσa (5)

is the local number density of component σ.
The local velocity uσ in the expression of the equilib-

rium distribution functions (3) is given by [7]

uσ = u + τσFσ/ρσ (6)

where

u =
∑
σ(1/τσ)

∑
a n

σ
aea∑

σ ρ
σ/τσ

· (7)

For simplicity, we consider that the masses of the two par-
ticle species in the system are identical and equal the unit
mass. For the same reason, we used equal values of the
relaxation times (τ0 = τ1 = 1) during all computer sim-
ulations discussed in this paper, which means that both
fluid components share the same viscosity [7–12]. Note
that some authors add a 1/2 factor to the term τσFσ
in (6); since this factor may be absorbed in the constants
entering the force terms in equation (8) below, we shall
not consider it here.

The total force field Fσ acting on component σ has
two terms:

Fσ = Fs,σ + Fd,σ. (8)

The first one is responsible for the phase separation of the
binary fluid system and has the form first suggested in [7]

Fs,σ(x) = −ρσ(x)
∑
a

Gs
aρ
σ̄(x + ea)ea (9)

where σ = 0, 1 and σ̄ = 1− σ. In order to account for the
correct value of the repulsive force between the two fluid
components when dealing with a square lattice [10–12],
we set

Gs
a = ωaG, a = 1, . . . , 8. (10)

The second term in (8) accounts for the dipolar inter-
action which is considered to act only between particles
belonging to the first component (σ = 0). These particles
are supposed to be identical and carry the same perma-
nent magnetic moment m, whose magnitude is m. Conse-
quently,

Fd,σ(x) =

{
−ρσ(x)

∑
a Gd

aρ
σ(x + ea)ea (σ = 0)

0 (σ = 1)
(11)

where

Gd
a = ωa

[
m2

|ea|3
− 3(m · ea)2

|ea|5
]

a = 1, . . . , 8. (12)

The constants Gd
a , which were initially defined in [13] on

a hexagonal lattice, were multiplied here by the weight
factors ωa in order to account for the square lattice. Note
that in the present model, unlike the model in [13], all
magnetic particles carry the same magnetic moment, a
simplification which reduces significantly the number of
species of particles in the LB model, a fact which allows
a considerable reduction in the computational effort.

3 Linear interface

3.1 Interface between two nonmagnetic fluids

The main characteristic of this model is to produce phase
separation when the value of the constant G in (10) ex-
ceeds a critical value [7,10–12] which allows the repul-
sive interaction energy to win out over the thermal energy
which tends to mix the particles. However, the two com-
ponents are never completely separated: in each phase,
one of the two components predominates while a small
amount of particles belonging to the other component is
still present. This is a characteristic of regular binary so-
lutions whose components have a repulsive interaction en-
ergy proportional to their local densities [14] and is also
encountered in other LB models [15–17] for binary fluid
systems. The separation of the two components is better
for larger values of the repulsive interaction constant G, as
seen in Figure 1 where the variation of the density ρ0 of
component σ = 0 along the x axis is shown for G = 1.5 and
G = 2.0, when no dipolar interaction is present (m = 0).

The results in Figure 1 were obtained on a 256 × 16
lattice using periodic boundary conditions in both di-
rections. For this reason, two symmetric plane interfaces
are established in the system, but in Figure 1 we show
the density profiles across a restricted interval along the
x-direction (where only one of the two interfaces is visible)
in order to improve the readability of the graph. Although
the left phase in Figure 1 is rich in the component σ = 0,
the total density ρ = ρ0 + ρ1 is found to have the same
value in each phase (except the interface region [7,17]),
which equilibrates the total ideal gas pressure pi = ρ/3 in
bulk phases.
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Fig. 1. Particle number density profiles of component σ = 0
across an equilibrated linear interface, for G = 1.5 and G = 2.0,
when no dipolar interaction is present.

We should mention here that it is not possible to in-
crease indefinitely the value of the interaction constant G
if one wants to enhance the separation of the two fluid
components in the present LB model. When exceeding a
threshold value Gt (which is approximately Gt = 3.0 in
the absence of dipolar interaction), the system becomes
unstable and negative values of the equilibrium distribu-
tion functions are recovered because of the large values of
the local velocity which are established in this case. The
presence of dipolar interactions is always found to reduce
this threshold value when increasing the magnitude of the
magnetic moment m. For this reason, most of our sub-
sequent simulations were done using the values G = 1.5
and G = 2.0, which allow to use relatively large values
for m and thus, leaves the possibility to study the effects
of the competition between surface tension and dipolar
forces without getting the LB particle system into the nu-
merically unstable domain.

3.2 Interface between a magnetic and a nonmagnetic
fluid

The presence of magnetic dipolar interactions alters the
energy (or pressure) balance between the magnetic and
nonmagnetic fluid phase, resulting in a pressure and den-
sity equilibrium which depends on the strength and ori-
entation of the magnetisation. In this section, the equilib-
rium pressures of the magnetic and non-magnetic phases
are derived, first from the energy levels of an array of uni-
form magnetic dipoles on a lattice under the influence of
an externally applied field, H0, and then based on the
actual formulation of the dipolar interactions in the lat-
tice Boltzmann model as given in equations (11) and (12).
The latter predictions are then compared with results from
model integrations.

Two energy terms enter the pressure balance equation,
the energy of a dipole under the influence of the exter-
nally applied magnetic field and the interaction energy
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Fig. 2. Illustration of the interaction energy between a number
of dipoles.

between pairs of dipoles within the fluid. The additional
term describing interfacial tension present in a real system
is absent in the model presented here, because the phase
separation is described in a way which adds an equal term
to the energy of both phases. In a pressure balance, the
contribution from the separation force will then cancel
out.

The energy of a point dipole with fixed magnetic mo-
ment, m, within an applied magnetic field, H, is given by
([4], Eq. (1.17))

Eh = − (m ·H) . (13)

In the present case, where the magnetisation is modelled
to be proportional to the magnetic field, the energy results
in an additional bulk pressure term (where m = µ0M in
a unit volume and M = χH with χ the magnetic suscep-
tibility)

Eh = −µ0MH = − 1
χµ0

m2. (14)

The general form of the dipolar interaction energy be-
tween dipoles with magnetic moments m1 and m2, respec-
tively, and separated by r, is given by ([4], Eq. (1.20))

Edd =
1

4πµ0

[
m1·m2

r3
− 3
r5

(m1·r) (m2·r)
]
. (15)

Assuming complete separation between the nonmag-
netic and the magnetic fluid phase (which is the case in
reality in contrast to the lattice Boltzmann model), the
magnetic fluid phase of the model corresponds to a situa-
tion where identical and co-aligned dipoles with magnetic
moment m are uniformly distributed over a lattice with
unit lattice spacing. The interaction energy between two
nearest neighbour dipoles on such a lattice are summarised
in Figures 2a, b, c. The case where two dipoles are in line,
one expects an attractive force between them, which is
substantiated by the large negative contribution from the
second term in the RHS of equation (15). In the case of
the dipoles arranged side-by-side, on the other hand, that
second term vanishes, and the positive contribution from
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the first term remains, resulting in a repulsive force. Eval-
uating (15) (and dropping the universal factor 1/(4πµ0))
for these two cases results in Edd = −2m2 and Edd = m2,
respectively. The contribution from a dipole at a diago-
nal point with a distance of r =

√
2, is relatively small,

Edd = −2−5/2m2 = −0.18m2.
Since the force due to the dipolar interaction energy is

F = −∇Edd, an interfacial pressure term can be defined
as the difference between the energy acting on a dipole at
the surface and an adjacent dipole just below the surface.
Assuming a flat interface, the energy difference is given
by one row of dipoles along the length of the interface.
Calculating the dipolar interaction of such a row on a
dipole at the surface, the interfacial pressure terms become

pi,‖ =
0.146
4πµ0

m2 ≈ 0 (16)

pi,⊥ =
−2.170
4πµ0

m2 ≈ − m2

2πµ0
· (17)

Thus, at the interface the pressure balance consists
of the standard (‘thermodynamic’) pressure, pσ, of the
nonmagnetic fluid, σ = 1, on one side and of the combi-
nation of the ‘thermodynamic’ pressure, the ‘bulk mag-
netic pressure’ from equation (14), and the dipolar ‘inter-
facial pressure’ from equations (16) or (17) of the magnetic
fluid, σ = 0 on the other side. Using the ideal gas equation,
the density differences, δρ = ρ0 − ρ1, should then scale as

δρ‖ ∝
m2

χµ0
(18)

δρ⊥ ∝
(

1 +
χ

2π

) m2

χµ0
· (19)

Comparing the pressure terms, (14) and (17), with the
usual magnetic pressure terms it is evident that the
term µ0MH corresponds to the bulk fluid magnetic pres-
sure, pm = µ0

∫
MdH ([4], Eq. (4.36b)), and the term

m2/(2πµ0) to the magnetic normal pressure, 1
2µ0M

2
n, ([4],

Eq. (5.23)). The magnetostrictive pressure,

ps = −µ0

∫ H

0

ρ

(
∂M

∂ρ

)
H,T

dH

([4], Eq. (4.36a)) cannot be represented by the present
parameterisation of the magnetisation.

In the lattice Boltzmann model, where the external
field is parameterised by the magnitude of the dipole mo-
ment, m, and where only the eight nearest neighbours
contribute to the dipole interactions, the magnetic en-
ergy terms are completely described by the situations
illustrated in Figures 2d, e, f, weighted by the factors
ωa defined in equation 4, leading to surface pressures,
pm = ∆Edd, of

pm,⊥ = −0.1013m2

pm,‖ = +0.2320m2.

Since the relationship between pressure and density in this
model is ρ = 3p, the pressure balance becomes

ρ0 + 3pm = ρ1

which results, after inserting the magnetic surface pressure
for the two cases, in expressions for the density difference
across the two phases, δρ = ρ0 − ρ1, as

δρ⊥ = +0.3039m2 (20)

δρ‖ = −0.6961m2. (21)

The density difference was tested with the lattice
Boltzmann model for a range of values for m and two
values for the separation constant, G = 2.0 and 2.5. The
results for three cases, all with G = 2.0 are shown in Fig-
ure 3, the first with no magnetisation, the second with
magnetisation perpendicular to the interface, and the last
with the magnetisation parallel to the interface. The fig-
ures show clearly that in the absence of dipolar interac-
tions, the densities in both phases are equal in contrast to
the cases where dipolar interactions are present. If the ap-
plied magnetic field is normal to the interface, the density
in the magnetic fluid increases, while it decreases when
the field is parallel to the interface. Furthermore, it is ev-
ident that the effect is stronger in the case of the parallel
applied field.

The scaling of the density difference with the magneti-
sation of the fluid, i.e. for different values of m, is best de-
scribed by a quadratic in m, as demonstrated in Figure 4.
The figure also shows that, while the value of G affects
the densities in the two fluid phases, it has no significant
effect on the density difference. Therefore, proportionality
factors between δρ and m2 were found for the combined
results from both values of G. The linear regression re-
sulted in the expressions

δρ⊥ = + (0.329± 0.003)m2 (22)

δρ‖ = − (0.732± 0.009)m2. (23)

While these results lie outside the statistically calculated
error margin compared to the predictions of 0.304 and
−0.696, respectively, they are nevertheless very close. The
small discrepancy might arise from the assumption in the
derivation of the scaling that the interface is a true inter-
face with pure fluid phases on both sides of the interface
while the lattice Boltzmann model shows a residual pres-
ence of the magnetic fluid in the mainly non-magnetic
phase and vice versa, as evident in Figure 3.

4 Drop deformation

Magnetic fluid drops elongate parallel to applied magnetic
fields because of the anisotropy induced by the orientation
of the magnetic moments of colloidal particles. For small
amplitudes of the external magnetic field, these drops re-
main quite ellipsoidal, while becoming needle-like if the
field is increased further [4,5]. In the case of 2D drops,
their shape may be characterized through the eccentricity

ε =
a

b
− 1 (24)

where a and b are the major and minor axes of the ellipsis,
respectively.
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Fig. 3. Particle number density profiles across a linear in-
terface at equilibrium: a) mx = 0, my = 0; b) mx = 0.500,
my = 0; c) mx = 0, my = 0.500.

A recent theoretical and experimental study on the
elongation of magnetic fluid drops [18] revealed that, for
small magnetic field amplitudes, the eccentricity of a 2D
drop placed in a Hele-Shaw cell has a quadratic depen-
dence on the field amplitude H (i.e., on the fluid mag-
netisation M , since M = χH, where χ is the magnetic
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Fig. 4. Density difference between the magnetic and non-
magnetic for different values of mx (δρ⊥; solid line) or my
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Fig. 5. Equilibrium shapes of magnetic fluid drops (lattice size
128 × 64) recovered after 20,000 automaton steps for G = 2.0
and different values of the magnetic moment orientated along
the x-axis.

fluid susceptibility)

ε ∝ χ2H2

γ
· (25)

Here γ is the surface tension coefficient. To compare LB
simulation results with those in [18], we consider that the
magnitude of the magnetic moment m carried by our par-
ticles in the LB model may be seen as being proportional
to the external magnetic field amplitude.

Figure 5 shows the equilibrium shape of a 2D mag-
netic fluid drop calculated with our LB model for different
values of the magnetic moment m orientated along the
x-axis. For small values of mx, the magnetic fluid drop
remains quite ellipsoidal, while it becomes needle-like at
subsequently larger values.

For a quantitative investigation of the dependence of
the drop eccentricity vs. magnetic field, we used a larger
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lattice than in Figure 5. To compute the eccentricity in ac-
cordance to (24), we have to count the number of lattice
nodes along the x- and y-axes, respectively, which are oc-
cupied by the magnetic fluid phase (a lattice node was con-
sidered to be occupied by the magnetic fluid phase when
the value of ρ0 was larger than 0.5). Although this proce-
dure gives only an approximation of the interface position
while the drop eccentricity is determined as the ratio of
two integer numbers (a better approximation would be to
use real numbers and an interpolation procedure instead
of working with integer numbers to measure the length of
the two axes of the ellipsis), a 144×96 lattice was found to
provide accurate space resolution for our purposes, with a
reasonable computing effort.

Figure 6 shows the LB computed dependence of the
eccentricity, ε, of 2D magnetic fluid drops vs. the squared
magnetic momentum, m2, of particles belonging to species
σ = 0, for two values of the interaction parameter G. In all
cases, simulations were started with the same circular drop
of radius equal to 36 lattice units, while the x component
of the magnetic moment m was set to different values.
The quite linear dependence of ε on m2, which is seen for
small values of m is remarkable, despite the very simple
LB model we used.

As m increases, on can see the LB computed eccentric-
ity values in Figure 6 becomes larger than the value one
would expect in accordance to the ε ∝ m2 prediction. This
behaviour may be explained since the drops become more
flattened when approaching the needle-like status where
the thickness of the drops becomes uniform except at the
extremities.

The fact that data points we get using G = 1.5 in
Figure 6 are situated above the points corresponding to
G = 2.0 is also in accordance to the theoretical estima-
tion (25) derived in [18] since the surface tension coeffi-
cient decreases when G also decreases [7,10]. The fact that
a larger amount of magnetic particles is dispersed in the
non-magnetic phase (i.e., outside the drop) for smaller G
may account for the deviations of the resulting eccentric-
ity values from the corresponding straight lines passing
through the origin, which are more evident for G = 1.5.

5 Normal field instability

A perpendicular, uniform magnetic field applied to a pool
of magnetic fluid generates an ordered pattern of surface
protuberances when the field exceeds a critical value. The
stability analysis of the magnetic fluid surface gives the
following dispersion relation for a perturbation wave in
the absence of the gravitational field [4]:

ω2(ρ0 + ρ1) = γκ3 − κ2µ0M
2

1 + µ0/µ
(26)

where ω is the complex angular frequency, κ is the wave
number, γ is the surface tension coefficient, M is the mag-
netic fluid magnetisation, while µ0 and µ are the magnetic
permeabilities of the vacuum and the magnetic fluid, re-
spectively.
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Fig. 6. Eccentricity of magnetic fluid drops as a function of
the squared magnetic moment of particles (m2) belonging to
species σ = 0, for G = 1.5 and G = 2.0 (upper and lower data
sets, respectively). The straight lines are eye guides.

In order to see the ability of the present LB model
to capture the main characteristics of the development
of normal field instabilities, in Figures 7 and 8 we show
the results of computer runs made on two lattices having
64 × 128 and 128 × 128 nodes, respectively, but other-
wise identical conditions, namely the interaction constant
G = 2.0, no tangential magnetisation (mx = 0), and a nor-
mal magnetisation ofmy = 0.35. Periodic boundary condi-
tion were used in the x-direction, while bounce back walls
were introduced at the upper and lower lattice bound-
aries. A perturbation, A sin(2πi/L) with i = 0, 1, . . . , L−1
where L = 64 or L = 128, respectively, was superimposed
on the flat magnetic fluid interface located at the middle
of the lattice. While the parameters corresponding to the
surface tension, the magnetic permeabilities, and the mag-
netisation in equation (26) remain the same, the change
in the lattice geometry and imposed perturbation corre-
sponds to a change in the wave number, κ.

Both simulations show the formation of oscillating
magnetic fluid spikes orientated along the external mag-
netic field (i.e., normal to the interface). In the first case
(Fig. 7), however, the amplitude of these spikes is atten-
uated until the interface recovers the equilibrium plane
shape (not shown in Fig. 7) after a large number of time
steps (approx. 50,000). In the second case (Fig. 8), oscil-
lations increase their amplitude very quickly due to the
normal field instability. The large values of the resulting
fluid velocities open up the possibility of further, shear-
induced instabilities of Kelvin-Helmholtz type, which may
be the cause for the wave-like structure of the peaks at
later stages. The extremely intricate structure resulting
from the instability is not shown in Figure 8 since this
later stage does not correspond to the physical situation
in which the spikes equilibrate with a stable shape [4].
Our attempts to increase the surface tension (which even-
tually would eliminate the development of the later stage
instability) using larger values of the interaction constant
G during computer runs failed because the fluid system
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Fig. 7. Time evolution of a perturbed magnetic fluid interface
under normal field (G = 2.0, mx = 0, my = 0.35, initial ampli-
tude of the perturbation: 2 lattice units, lattice size: 64×128).
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Fig. 7. Continued.

becomes unstable when G > 3 and negative values of the
distribution functions are recovered.

While at present no exact mapping between the repre-
sentation of the model interactions (phase separation and
dipolar interactions) and the quantities of equation (26)
(surface tension and magnetisation) can be formulated, a
qualitative explanation for the different behaviour can be
found in the dispersion relation for the normal instability,
equation (26) [4]. In the first case (L = 64) the wavevector
κ = 2π/L is large enough to ensure a real value of the an-
gular frequency ω in equation (26), which means that the
perturbation is finally attenuated. This is no more valid
in the second case, when the occurrence of an imaginary
value of the frequency ω allows the perturbation to de-
velop further. For a direct comparison between the model
and the dispersion relation, a much larger number of simu-
lations are required which will for the subject of a separate
paper.
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Fig. 8. Time evolution of a perturbed magnetic fluid interface
under normal field (G = 2.0, mx = 0, my = 0.35, initial ampli-
tude of the perturbation: 2 lattice units, lattice size: 128×128).

t = 3, 600 t = 3, 800 t = 4, 000

t = 4, 200 t = 4, 400 t = 4, 600

t = 4, 800 t = 5, 000 t = 5, 200

Fig. 8. Continued.

Since the magnetic fluid spike reaches the upper wall
after approx. t = 5, 000 time steps on the 128×128 lattice
(Fig. 8), we performed also a run on a 128 × 256 lattice
to check if a qualitatively different behaviour may be ob-
served when the walls are situated at a larger distance
from the interface while the wave number κ has the same
value. Figure 9 shows that the shape of the magnetic fluid
interface has a similar evolution on the 128× 256 lattice.
However, the instability has a more prominent develop-
ment at t = 5, 000 because of walls being situated at a
larger distance, which allows the development of higher
fluid speeds in the interface region.

6 Conclusions

A lattice Boltzmann model was developed to account for
the competition between surface tension and dipolar in-
teraction in magnetic fluids. In this model, the phase sep-
aration between two fluid components, as well as the sur-
face tension is controlled by a single parameter (G), while
the strength of the dipolar interaction is controlled by the
value of the magnetic moment m of the particles belong-
ing to the magnetic fluid component. Compared to the
forces present in a complete ferrohydrodynamic descrip-
tion, this model is such a simplification that there is no
a priori certainty that it should be sufficient to describe
the range of different situations presented here. Despite its
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t = 3, 200 t = 4, 000 t = 5, 000

Fig. 9. Shape of the magnetic fluid interface under normal
field (G = 2.0, mx = 0, my = 0.35, initial amplitude of the
perturbation: 2 lattice units) after 3, 200, 4, 000 and 5,000 time
steps performed on the 128× 256 lattice.

simplicity, the model is able to recover the main character-
istics of a 2D magnetic liquid - nonmagnetic fluid interface:
drop deformation under the action of an external mag-
netic field and the early stage development of normal field
instability. The success of the model in the systems stud-
ied supports our view that this very simple model, rep-
resenting only phase separation and dipolar interactions,
contains the essential dynamics for magnetic-nonmagnetic
two-fluid systems. As shown below, discrepancies between
the model and a ferrohydrodynamic description could eas-
ily be identified giving clear indications to the additional
forces required to reproduce a given situation. Therefore,
shortcomings provide useful physical insight into the rel-
ative importance of the range of forces contained in the
full equations of motion.

Since the two fluid components are not perfectly im-
miscible (a characteristics which is present also in more
elaborated LB models [15–17]), the region of the domain
representing the nonmagnetic phase contains some mag-
netic fluid particles and vice versa. Despite this unphysical
representation, interface forces and phenomena are well
captured by the model. The use of an ideal gas represen-
tation of two immiscible liquids seems therefore justified
in the presented situations.

The most obvious differences between the behaviour
based on a continuum description and that based on the
lattice Boltzmann model arose through the parameteri-
sation of the magnetisation of the magnetic particles by
an externally imposed magnetic field and through the de-
scription of the dipolar interaction. The very much simpli-
fied description of the magnetisation of the magnetic fluid
resulted in the absence of the magnetic bulk pressure. It
would, however, be easily possible to expand the present
model to incorporate a representation of the magnetic
fluid pressure, based on equation (14). The restriction of
the dipolar interaction to the nearest neighbours–a logi-
cal consequence of using a lattice Boltzmann approach–
resulted in a quantitative difference compared to the case

where dipoles at a larger distance were included. A pos-
sible extension of the model might be to balance the ‘ab-
sent’ distant dipoles in a local manner by assigning ‘mir-
ror’ dipolar charges to the non-polar fluid. By acting only
on the dipolar fluid phase, no unphysical effects on the
non-polar phase would be added, and because the forces
are localised to the nearest neighbours, such an extension
would only be noticed by the dipolar phase at the inter-
face. This idea, however, requires further work.
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